Олово это минерал физические свойства, описание, месторождения и фото камень олово

Станнин это минерал. Физические свойства, описание, месторождения и фото. Камень Станнин

Личный кабинет Главная Минералы Месторождения Новости События Информация Коллекции Магазины Исследования Тендеры Форум АБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЭЮЯ

Минералы и горные породы / минерал СтаннинАнглийское названиеStannite
Ассоциации: Галенит Касситерит Тетраэдрит и др.

Станнин — минерал, сложный сульфид меди, железа и олова. Впервые описан в 1797 году из Уил Рок, Санкт-Агнес, Корнуолл, Англия.

При температуре ниже 420°С кристаллизуется в тетрагональной сингонии, при более высокой температуре образуется кубическая модификация станнина — изостаннин.Химический состав: Сu — 29,5%, Fe — 13,1 %, Sn — 27,5%, S — 29,9%. Содержание по анализам (в %): олова 22,0-27,7, меди 22,9-31,5, железа 4,7-23,3.

Кроме того, присутствуют примеси (в %): Zn — 0,75-10,1, Sb — до 3, Cd — до 1,5, Рb — до 2 и Ag — до 1. Кристаллическая структура станнина аналогична структуре халькопирита. В основе кристаллической структуры станнина — плотнейшая кубическая упаковка с тетраэдрической координацией атомов серы и металлов.

В расположении катионов намечается следующий порядок: в первом и пятом листах по вершинам квадрата ионы Sn, в центре — Fe; в срединном листе наоборот, по вершинам ионы Fe, а в центре — Sn; чётные листы (второй и четвертый) сложены ионами Cu. По расположению ионов кристаллическое строение станнина, как и халькопирита, следовательно, близко к кристаллической структуре сфалерита.

Кристаллическую структуру станнина удобно представить также как структуру халькопирита в качестве производной от структуры кубического сфалерита с тем лишь отличием, что если в трехслойной упаковке атомов S в сфалерите заполнена половина тетраэдрических пустот одной ориентации атомами Zn, в халькопирите — двумя сортами атомов: Fe и Cu, то в станнине кроме атомов Fe и Cu участвуют ещё и атомы Sn. При этом перпендикулярно единственной оси 4-, сохранившейся от исходной пространственной группы сфалерита, слои из чисто медных тетраэдров чередуются с Fe- Sn-тетраэдрическими слоями таким образом, что параметр c тетрагональной ячейки станнина оказывается удвоенным по сравнению с параметром сфалерита.

Диагностические признаки: Типичным является цвет с характерным оливково-зеленоватым оттенком, по которому станнин сравнительно легко отличается на глаз от блеклых руд, похощих на него по ряду признаков (твёрдости, хрупкости и др.). Под п.

тр. на угле плавится, белея с поверхности и образуя около самой пробы белый налёт SnO2. Медь, железо и сера устанавливаются в нем химическими реакциями. В HNO3 разлагается, выделяя серу и двуокись олова; раствор его приобретает синий цвет.

По распространённости второй после касситерита минерал олова. Наиболее характерен для руд гидротермальных (преимущественно средне- и низкотемпературных) месторождений касситерит-силикатной и касситерит-сульфидной формаций. Отмечается в оловоносных пегматитах, грейзенах и высокотемпературных олово-вольфрамовых месторождениях касситерит-кварцевой формации.

Является сравнительно малораспространённым минералом в гидротермальных оловорудных месторождениях. В вольфрамо-оловянных месторождениях наблюдается в ассоциации с касситеритом, халькопиритом, арсенопиритом, вольфрамитом и другими минералами.

Гораздо чаще встречается в сфалерито-галенитовых и сфалерито-пирро-тиновых оловосодержащих рудах. В этих рудах парагенетически с ним очень тесно связаны сфалерит и халькопирит, а иногда пирротин, галенит и др.

В ряде случаев устанавливаются явления замещения его касситеритом и наоборот.В зоне окисления легко разлагается с образованием в конечном счете лимонита и касситерита.

Однако главная масса олова при этом переходит, повидимому, в коллоидальный раствор, который впоследствии коагулирует и даёт в результате землистые, губчатые или колломорфные стяжения касситерита.

Месторождения

На территории России станнин в незначительных количествах встречен во многих оловянно-волфрамовых месторождениях (м-ние Тигриное в Приморье, м-ние Букуке в Забайкалье, в Якутии), в ассоциации чаще всего с халькопиритом, в парагенезисе с касситеритом и сфалеритом в зёрнах размером до 1 см.

Из иностранных месторождений наиболее значительны находки в Циновец (бывш. Циннвальд, Рудные горы на границе Германии с Чехией), в Центральном Таджикистане (Мушистон), в значительных количествах в Цихане (о. Тасмания), в Южн. Китае, во многих месторождениях Боливии (Ахота, Потози, Льяльягуа и др.

), в Великобритании, Канаде.

Практическое использование

В большинстве случаев станнин встречается в незначительных количествах, и потому не имеет такого важного промышленного значения, как касситерит. Нередко составляет значительную (от 5 до 70% общего содержания Sn) часть в балансе металла труднообогатимых оловянных руд.

Однако промышленностью используется в незначительных масштабах в связи со сложностью технологии переработки станниновых руд. При гравитационном обогащении выделяется в коллективный сульфидный концентрат. Селективная флотация станнина требует подбора специальных режимов с использованием в качестве собирателей тиокарбонилидов и ксантогенатов.

Комплексные станниновые концентраты могут перерабатываться методами хлорирования, фьюмингования, сульфидовозгонки и др.

рассказать об ошибке в описании

Цвет на свежем изломе стально-серый с оливково-зеленоватым оттенком. При наличии микроскопических включений халькопирита приобретает желтоватый оттенок. Цвет черты черный Происхождение названия от латинского stannum — олово Место открытия West Wheal Kitty (Wheal Rock), West Wheal Kitty group, St Agnes, St Agnes District, Cornwall, England, UK Год открытия 1797 IMA статус действителен, описан впервые до 1959 (до IMA) Химическая формула Cu2FeSnS4 Блеск металлический
Прозрачность непрозрачный
Спайность несовершенная несовершенная по {001} несовершенная по {110}

Излом неровный

Твердость 4
Термические свойства Плавится, на угле образует белый налет. Типичные примеси Ag,Zn,Cd,In Strunz (8-ое издание) 2/C.06-60 Hey's CIM Ref. 6.1.6 Dana (8-ое издание) 2.9.2.1 Молекулярный вес 429.91 Параметры ячейки a = 5.4432Å, c = 10.7299Å Отношение a:c = 1 : 1.971 Число формульных единиц (Z) 2 Объем элементарной ячейки V 317.91 ų Двойникование Двойники прорастания по {102}; двойниковой осью служит {112}, двойниковая плоскость {112}. Полисинтетическое двойникование наблюдается в полированных шлифах. Точечная группа 4 2m — Scalenohedral Пространственная группа I4 2m Плотность (расчетная) 4.49 Плотность (измеренная) 4.3 — 4.5 Плеохроизм слабый Тип анизотропный Оптическая анизотропия различимая фиолетовый — аспидно-зелёный Цвет в отраженном свете серый с оливково-зелёным оттенком. Форма выделения Обычно встречается в виде зерен неправильной формы и сплошных масс. Кристаллы редки и имеют псевдокубический или тетраэдрический облик. Изредка образует уплощённые кристаллы псевдо-тетраэдрического габитуса со штриховкой на гранях Классы по систематике СССР Сульфиды Классы по IMA Сульфиды
Сингония тетрагональная Микротвердость VHN25=216 — 265 kg/mm2 Хрупкость Да Литература Бетехтин А.Г. Курс минералогии, под научн. ред. Б.И. Пирогова и Б.Б. Шкурского. М., 2008
Маршукова Н.К., Павловский А.Б., Сидоренко Г.А. Станнин и продукты его изменения в зоне окисления оловорудных месторождений Вост. Киргизии. — Геохимия, 1969, №9.Каталог Минералов

2005-2018 © Каталог Минералов, камень

  • Моя коллекция
  • Добавить образец
  • Добавить месторождение
  • Предложить новость
  • Управление рассылкой
  • Профайл
  • Источник: https://readtiger.com/www.catalogmineralov.ru/mineral/stannite.html

    Олово

    ОЛОВО (лат. Stannum), Sn, химический элемент с атомным номером 50, атомная масса 118,710. О происхождении слов «stannum» и «олово» существуют различные догадки.

    Латинское «stannum», которое иногда производят от саксонского «ста» — прочный, твердый, первоначально означало сплав серебра и свинца. «Оловом» в ряде славянских языков называли свинец.

    Возможно, русское название связано со словами «ол», «оловина» — пиво, брага, мед: сосуды из олова использовались для их хранения. В англоязычной литературе для названия олова используется слово tin. Химический символ олова Sn читается «станнум».

    Природное олово состоит из девяти стабильных нуклидов с массовыми числами 112 (в смеси 0,96% по массе), 114 (0,66%), 115 (0,35%), 116 (14,30%), 117 (7,61%), 118 (24,03%), 119 (8,58%), 120 (32,85%), 122 (4,72%), и одного слабо радиоактивного олова-124 (5,94%).

    124Sn — b-излучатель, его период полураспада очень велик и составляет T1/2 = 1016–1017 лет. Олово расположено в пятом периоде в IVА группе периодической системы элементов Д. И. Менделеева. Конфигурация внешнего электронного слоя 5s25p2.

    В своих соединениях олово проявляет степени окисления +2 и +4 (соответственно валентности II и IV).

    Металлический радиус нейтрального атома олова 0,158 нм, радиусы иона Sn2+ 0,118 нм и иона Sn4+ 0,069 нм (координационное число 6). Энергии последовательной ионизации нейтрального атома олова равны 7,344 эВ, 14,632, 30,502, 40,73 и 721,3 эВ. По шкале Полинга электроотрицательность олова 1,96, то есть олово находится на условной границе между металлами и неметаллами.

    Физические и химические свойства: простое вещество олово полиморфно. В обычных условиях оно существует в виде b-модификации (белое олово), устойчивой выше 13,2°C.

    Белое олово — это серебристо-белый, мягкий, пластичный металл, обладающий тетрагональной элементарной ячейкой, параметры a = 0.5831, c = 0.3181 нм. Координационное окружение каждого атома олова в нем — октаэдр.

    Плотность b-Sn 7,228 г/см3. Температура плавления 231,9°C, температура кипения 2270°C.

    При охлаждении, например, при морозе на улице, белое олово переходит в a-модификацию (серое олово). Серое олово имеет структуру алмаза (кубическая кристаллическая решетка с параметром а = 0,6491 нм). В сером олове координационный полиэдр каждого атома — тетраэдр, координационное число 4.

    Фазовый переход b-Sn a-Sn сопровождается увеличением удельного объема на 25,6% (плотность a-Sn составляет 5,75 г/см3), что приводит к рассыпанию олова в порошок. В старые времена наблюдавшееся во время сильных холодов рассыпание оловянных изделий называли «оловянной чумой».

    В результате этой «чумы» пуговицы на обмундировании солдат, их пряжки, кружки, ложки рассыпались, и армия могла потерять боеспособность. (Подробнее об «оловянной чуме» см. интересные факты об олове, ссылка внизу этой страницы).

    Из-за сильного различия структур двух модификаций олова разнятся и их электрофизические свойства. Так, b-Sn — металл, а a-Sn относится к числу полупроводников. Ниже 3,72 К a-Sn переходит в сверхпроводящее состояние. Стандартный электродный потенциал E °Sn2+/Sn равен –0.136 В, а E пары °Sn4+/Sn2+ 0.151 В.

    При комнатной температуре олово, подобно соседу по группе германию, устойчиво к воздействию воздуха или воды. Такая инертность объясняется образованием поверхностной пленки оксидов. Заметное окисление олова на воздухе начинается при температурах выше 150°C:

    Sn + O2 = SnO2.

    При нагревании олово реагирует с большинством неметаллов. При этом образуются соединения в степени окисления +4, которая более характерна для олова, чем +2. Например:

    Sn + 2Cl2 = SnCl4

    С концентрированной соляной кислотой олово медленно реагирует:

    Sn + 4HCl = SnCl4 + H2

    Возможно также образование хлороловянных кислот составов HSnCl3, H2SnCl4 и других, например:

    Sn + 3HCl = HSnCl3 + 2H2

    В разбавленной серной кислоте олово не растворяется, а с концентрированной — реагирует очень медленно.

    Состав продукта реакции олова с азотной кислотой зависит от концентрации кислоты. В концентрированной азотной кислоте образуется оловянная кислота b-SnO2·nH2O (иногда ее формулу записывают как H2SnO3). При этом олово ведет себя как неметалл:

    Sn + 4HNO3 конц. = b-SnO2·H2O + 4NO2 + H2O

    При взаимодействии с разбавленной азотной кислотой олово проявляет свойства металла. В результате реакции образуется соль нитрат олова (II):

    3Sn + 8HNO3 разб. = 3Sn(NO3)2 + 2NO + 4H2O.

    При нагревании олово, подобно свинцу, может реагировать с водными растворами щелочей. При этом выделяется водород и образуется гидроксокомплекс Sn (II), например:

    Sn + 2KOH +2H2O = K2[Sn(OH)4] + H2

    Гидрид олова — станнан SnH4 — можно получить по реакции:

    SnCl4 + Li[AlH4] = SnH4 + LiCl + AlCl3.

    Этот гидрид весьма нестоек и медленно разлагается уже при температуре 0°C.

    Олову отвечают два оксида SnO2 (образующийся при обезвоживании оловянных кислот) и SnO. Последний можно получить при слабом нагревании гидроксида олова (II) Sn(OH)2 в вакууме:

    Sn(OH)2 = SnO + H2O

    При сильном нагреве оксид олова (II) диспропорционирует:

    2SnO = Sn + SnO2

    При хранении на воздухе монооксид SnO постепенно окисляется:

    2SnO + O2 = 2SnO2.

    При гидролизе растворов солей олова (IV) образуется белый осадок — так называемая a-оловянная кислота:

    SnCl4 + 4NH3 + 6H2O = H2[Sn(OH)6] + 4NH4Cl.

    H2[Sn(OH)6] = a-SnO2·nH2O + 3H2O.

    Свежеполученная a-оловянная кислота растворяется в кислотах и щелочах:

    a-SnO2·nH2O + KOH = K2[Sn(OH)6],

    a-SnO2·nH2O + HNO3 = Sn(NO3)4 + H2O.

    При хранении a-оловянная кислота стареет, теряет воду и переходит в b-оловянную кислоту, которая отличается большей химической инертностью. Данное изменение свойств связывают с уменьшением числа активных HO–Sn группировок при стоянии и замене их на более инертные мостиковые –Sn–O–Sn– связи.

    Читайте также:  Псевдосинхалит это минерал физические свойства, описание, месторождения и фото камень псевдосинхалит

    При действии на раствор соли Sn (II) растворами сульфидов выпадает осадок сульфида олова (II):

    Sn2+ + S2– = SnS

    Этот сульфид может быть легко окислен до SnS2 раствором полисульфида аммония:

    SnS + (NH4)2S2 = SnS2 + (NH4)2S

    Образующийся дисульфид SnS2 растворяется в растворе сульфида аммония (NH4)2S:

    SnS2 + (NH4)2S = (NH4)2SnS3.

    Четырехвалентное олово образует обширный класс оловоорганических соединений, используемых в органическом синтезе, в качестве пестицидов и других.

    История открытия: когда человек впервые познакомился с оловом точно сказать нельзя. Олово и его сплавы известны человечеству с древнейших времен. Упоминание об олове есть в ранних книгах Ветхого Завета.

    Сплавы олова с медью, так называемые оловянные бронзы, по-видимому, стали использоваться более чем за 4000 лет до нашей эры.

    А с самим металлическим оловом человек познакомился значительно позже, примерно около 800 года до нашей эры.

    Из чистого олова в древности изготовляли посуду и украшения, очень широко применяли изделия из бронзы.

    Нахождение в природе: олово — редкий рассеянный элемент, по распространенности в земной коре олово занимает 47-е место.

    Содержание олова в земной коре составляет, по разным данным, от 2·10–4 до 8·10–3 % по массе. Основной минерал олова — касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова.

    Гораздо реже в природе встречается станнин (оловянный колчедан) — Cu2FeSnS4 (27,5 % Sn).

    для добычи олова в настоящее время используют руды, в которых его содержание равно или немного выше 0,1%. На первом этапе руду обогащают (методом гравитационной флотации или магнитной сепарации).

    Таким образом удается повысить содержание олова в руде до 40-70%. Далее проводят обжиг концентрата в кислороде для удаления примесей серы и мышьяка.

    Затем полученный таким образом оксид SnO2 восстанавливают углем или алюминием (цинком) в электропечах:

    SnO2 + C = Sn + CO2.

    Особо чистое олово полупроводниковой чистоты готовят электрохимическим рафинированием или методом зонной плавки.

    Применение: важное применение олова — лужение железа и получение белой жести, которая используется в консервной промышленности. Для этих целей расходуется около 33% всего добываемого олова.

    До 60% производимого олова используется в виде сплавов с медью, медью и цинком, медью и сурьмой (подшипниковый сплав, или баббит), с цинком (упаковочная фольга) и в виде оловянно-свинцовых и оловянно-цинковых припоев.

    Олово способно прокатываться в тонкую фольгу — станиоль, такая фольга находит применение при производстве конденсаторов, органных труб, посуды, художественных изделий.

    Олово применяют для нанесения защитных покрытий на железо и другие металлы, а также на металлические изделия (лужение). Дисульфид олова SnS2 применяют в составе красок, имитирующих позолоту («сусальное золото»).

    Искусственный радионуклид олова 119Sn — источник v-излучения в мессбауэровской спектроскопии.

    Физиологическое действие: о роли олова в живых организмах практически ничего не известно. В теле человека содержится примерно (1-2)·10–4 % олова, а его ежедневное поступление с пищей составляет 0,2-3,5 мг. Олово представляет опасность для человека в виде паров и различных аэрозольных частиц, пыли.

    При воздействии паров или пыли олова может развиться станноз — поражение легких. Очень токсичны некоторые оловоорганические соединения. Временно допустимая концентрация соединений олова в атмосферном воздухе 0,05 мг/м3, ПДК олова в пищевых продуктах 200 мг/кг, в молочных продуктах и соках — 100 мг/кг.

    Токсическая доза олова для человека — 2 г.

    Источник: http://www.oilngases.ru/redkie-metalli/olovo.html

    Олово — что это такое?

    Олово или Stannum (лат.) представляет собой легкоплавкий, пластичный металл с серебристо-белым цветом (см. фото). Латинское название означает «прочный, стойкий» и изначально так называли сплав со свинцом и серебром. А славянское название, имеющее корни балтийские просто означает цвет металла – белый.

    Этот элемент относится к семи древнейшим металлам. Уже 6000 лет назад человечество было с ним знакомо.

    Наибольшее распространение он получил в составе бронзы и был стратегически важным во времена «бронзового века» около 4000 лет назад.

    Из этого состава печатались деньги вплоть до 16 века, изготавливалась посуда и ювелирные изделия, применялся как антикоррозионное покрытие. Упоминания о металле были встречены даже на страницах Библии.

    В природе встречается в виде минералов. Самые распространенные — касситерит (речное олово) и станин (оловянный колчедан). Из них добывают олово в промышленных целях: электроника, аккумуляторы, обработка стекла (оно становится непроницаемым для лучей рентгеновского аппарата). Также соединения этого элемента используется для изготовления консервных банок, веществ, отгоняющих насекомых.

    Есть еще одна замечательная способность у олова – его присутствие в составе материалов музыкального инструмента, которое будет отличать этот инструмент великолепной чистотой звука и мелодичностью.

    В составе живых организмов элемент был обнаружен в 1923 году. При исследовании останков древних людей оказалось, что содержание олова в костях в 1000 раз меньше, чем у современного человека. Возможно, это связано с тем, что мы можем поглощать его из воздуха. А развитие промышленности привело к тому, что около четвертой части миллиона тонн оказываются в атмосфере в виде выхлопных газов.

    Действие олова

    Действие макроэлемента на живой организм сложно назвать токсичным, его часто применяют в пищевой промышленности. Его роль до конца не изучена. Элемент содержится в основном в костях, а также некоторое его количество находится в легких, сердце, почках, кишечнике. А с возрастом может увеличиться содержание в легких, это связано с воздействием окружающей среды.

    На сегодняшний день известны такие факты биологического воздействия:

    • участие в процессах роста;
    • входит в состав фермента желудка – гастрина;
    • активно участвует в реакциях окислительно-восстановительного характера;
    • за счет концентрации в костных тканях способствует их правильному развитию и развитию опорно-двигательного аппарата.

    Может оказывать полезное воздействие на организм лишь будучи в составе жирных кислот. Минеральные соединения могут оказать отравляющее действие.

    Относительно недавно оловом пользовались медики для лечения многих заболеваний – эпилепсия, неврозы, гельминтоз, экзема, помутнение роговицы глаза. В основном практиковалось наружное применение хлористого олова. К счастью, сегодня прогресс принес более эффективные и менее токсичные препараты без содержания металла.

    Олово – достаточно неактивный в химическом отношении элемент, поэтому с этой точки зрения особой пользы и вреда он не принесет. Единственное замеченное взаимодействие – с медью и цинком. Они взаимно нейтрализуют действие друг друга.

    Суточная норма

    Суточная норма макроэлемента находится в пределах от 2 до 10 мг в зависимости от возраста и пола.

    Хотя за день в наш организм поступает около 50 мг только с едой (а токсичной считают дозировку в 20 мг), отравления не произойдет.

    Все объясняется тем, что наш желудочно-кишечный тракт способен усвоить лишь 3-5% от всего поступающего количества. Весь остальной металл просто выводится естественным путем с мочой.

    Недостаток макроэлемента в организме происходит при хроническом поступлении менее 1 мг в сутки. Такой процесс может сопровождаться ухудшением слуха, потерей веса из-за утраты аппетита, замедлением роста, дисбалансом минерального состава, выпадением волос (частичная или полная патология).

    Такие процессы довольно редки, т.к. обычно достаточно поступления макроэлемента с продуктами питания и чаще всего вызываются проблемами с пищеварением и сложностями с усвоением.

    Вред избыточного приема олова

    Переизбыток макроэлемента, в основном, рискуют получить сотрудники предприятий, на которых используются соли олова: производство пластмасс, пестицидов, линолеума и др. За счет регулярного поглощения паров и пыли развиваются заболевания легких.

    Также в группе риска находятся люди, проживающие в опасной близости от автострад (в переделах полукилометра) – они получают высокую дозу из выхлопных газов.

    Олово в больших количествах подавляют содержание магния, который способен защитить клетки от новообразований.

    Есть еще один источник высоких доз элемента – консервные банки. При длительном хранении они начинают разрушаться, особенно если содержимое богато нитратами. Поэтому открыв такую банку, рекомендуется сразу переложить продукты в стекло. Хранить в открытом виде консервы категорически запрещается.

    Организмы пожилых людей и детей не могут быстро выводить олово из организма, поэтому он начинает накапливаться. Достаточно совсем мизерной дозы, чтобы вызвать отравление.

    Существует интересная теория из истории о падении Римской империи. Олово попадало в вино, обильно поглощаемое древними римлянами, из посуды и вызывало сбои в состоянии здоровья. Только в седьмом веке медики смогли определить причину заболевания, но было уже поздно – империя пала.

    Содержание элемента в организме человека можно определить, проведя химический анализ мочи или волос.

    Осложнения, которые возникают вследствие избытка олова, довольно неприятны. Опасной считается доза в 2 грамма макроэлемента, но она не является летальной (такая норма еще не определена).

    Она может вызывать анемию, заболевания печени, дыхательных путей, расстройства нервной системы.

    Может развиться такое заболевание, как станноз – тяжелый кашель, сопровождающийся отделением мокрот и задышкой.

    Но это еще не все – основных симптомов отравления достаточно много:

    • металлический привкус в ротовой полости;
    • головокружения и мигрени;
    • воспаления и язвенные образования на кожных покровах;
    • проблемы со зрением;
    • увеличение печени в размерах;
    • боли в желудке, колики;
    • рвота, диарея, потеря аппетита и, как следствие, снижение веса;
    • ускорение белкового обмена в крови;
    • возбужденность и агрессивное поведение, особенно у детей;
    • кожа приобретает бледно-серый оттенок, десна становятся синего цвета;
    • понижение уровня цинка и меди в крови.

    В случае поступления олова в больших дозах в течение длительного времени есть риск возникновения структурных изменений в хромосомах, что может привести к серьезным последствиям на генетическом уровне.

    При воздействии на центральную нервную систему этот макроэлемент способен вызывать депрессивные состояния. А дети могут отличаться агрессивностью, отсутствием заинтересованности в учебе, играх, чтению.

    Лечение обычно назначается по симптомам – диеты, гепатопротекторы (защита печени), препараты, содержащие медь и цинк. При критических отравлениях вводят медикаменты, способные связывать и выводить токсины – хелатирующие вещества.

    В каких продуктах питания содержится?

    Продукты, содержащие олово, можно найти как животного происхождения, так и растительного. Основная масса поступает с мясом свиньи, говядиной, птицей, молоком и его производными. Также некоторое количество элемента могут дать горох, семена подсолнуха, картофель, свекла. Другие овощи содержат совсем малые дозы олова.

    Кроме этого мы ежедневно получаем макроэлемент из воды и воздуха. И не забывайте о том, что частое употребление консервов тоже может снабдить организм избыточным количесвтом олова.

    Некоторые растения способны поглощать большое количество элемента из окружающей среды. Поэтому стоит аккуратно относиться к продуктам, выращенным возле автострад и промышленных зон.

    Показания к назначению

    Показания к назначению макроэлемента, в основном, применяются гомеопатами. Они лечат оловом такие заболевания, как:

    • бронхит, болезни легких;
    • мигрени;
    • панкреатит;
    • малый рост и вес;
    • а также применяют в качестве глистогонного препарата.

    Замечено, что при приеме малых доз медикаментов, содержащих олово, часто изменяется психическое состояние пациента – хорошее настроение сменяется раздражительностью, меланхоличностью, слезивостью. Поэтому такие назначение применяются в крайне редких случаях.

    Источник: http://xcook.info/makrojelementy/olovo.html

    Химический элемент олово: свойства и характеристики :

    Химический элемент олово является одним из семи древних металлов, которые известны человечеству. Этот металл входит в состав бронзы, имеющей огромное значение. В настоящее время химический элемент олово утратил востребованность, но его свойства заслуживают детального рассмотрения и изучения.

    Что собой представляет элемент

    Располагается он в пятом периоде, в четвертой группе (главной подгруппе). Подобное расположение свидетельствует о том, что химический элемент олово – амфотерное соединение, способное проявлять и основные, и кислотные свойства. Относительная атомная масса составляет 50, поэтому его считают легким элементом.

    Особенности

    Химический элемент олово является пластичным, ковким, легким веществом серебристого белого цвета. По мере эксплуатации он теряет свой блеск, что считают минусом его характеристик.

    Читайте также:  Шунгит это горная порода физические свойства, описание, месторождения и фото камень шунгит

    Олово – металл рассеянный, поэтому существуют сложности с его добычей. Элемент имеет высокую температуру кипения (2600 градусов), низкую температуру плавления (231,9 С), большую электрическую проводимость, отличную ковкость.

    У него высокое сопротивление разрыву.

    Олово – элемент, который не обладает токсичными свойствами, не оказывает негативного воздействия на организм человека, поэтому востребован в пищевом производстве.

    Какое еще имеет свойство олово? При выборе данного элемента для изготовления посуды и водного трубопровода не придется опасаться за свою безопасность.

    Нахождение в организме

    Чем еще характеризуется олово (химический элемент)? Как читается его формула? Данные вопросы рассматриваются в курсе школьной программы. В нашем организме данный элемент располагается в костях, способствуя процессу регенерации костной ткани. Его относят к макроэлементам, поэтому для полноценной жизнедеятельности, человеку достаточно от двух до десяти мг олова в сутки.

    В организм этот элемент попадает в большем количестве с пищей, но кишечник усваивает не больше пяти процентов поступлений, поэтому вероятность отравления минимальна.

    При недостатке данного металла происходит замедление роста, происходит потеря слуха, меняется состав костной ткани, наблюдается облысение. Отравление вызывается поглощением пыли или паров данного металла, а также его соединений.

    Основные свойства

    Плотность олова имеет среднюю величину. Металл отличается высокой коррозионной стойкостью, поэтому его применяют в народном хозяйстве. Например, олово востребовано при изготовлении консервных банок.

    Чем еще характеризуется олово? Применение этого металла основывается также на его способности объединять различные металлы, создавая устойчивую к агрессивным средам, внешнюю среду. Например, сам металл необходим для лужения предметов быта и посуды, а его припои нужны для радиотехники и электричества.

    Характеристики

    По своим внешним характеристикам этот металл аналогичен алюминию. В реальности сходство между ними незначительное, ограничивается только легкостью и металлическим блеском, устойчивостью к химической коррозии. Алюминий проявляется амфотерные свойства, поэтому легко вступает в реакцию со щелочами и кислотами.

    Например, если на алюминий действует уксусная кислота, наблюдается химическое взаимодействие. Олово же способно взаимодействовать только с сильными концентрированными кислотами.

    Преимущества и недостатки олова

    Данный металл практически не используется в строительстве, поскольку не отличается высокой механической прочностью. В основном в настоящее время используют не чистый металл, а его сплавы.

    Выделим основные преимущества данного металла. Особое значение имеет ковкость, ее используют в процессе изготовления предметов быта. Например, эстетично выглядят подставки, светильники, выполненные из данного металла.

    Оловянное покрытие позволяет существенно снижать трение, благодаря чему изделие защищено от преждевременного износа.

    Среди основных недостатков данного метала можно упомянуть его незначительную прочность. Олово непригодно для изготовления частей и деталей, предполагающих существенные нагрузки.

    Добыча металла

    Плавление олова осуществляется при невысокой температуре, но из-за трудности его добычи металл считается дорогостоящим веществом. Из-за низкой температуры плавления при нанесении олова на поверхность металла можно получить существенную экономию электрической энергии.

    Структура

    Металл имеет однородную структуру, но, в зависимости от температуры, возможны разные его фазы, отличающиеся по характеристикам. Среди самых распространенных модификаций данного металла отметим β-вариант, существующий при температуре 20 градусов.

    Теплопроводность, его температура кипения, являются основными характеристиками, приводимыми для олова. При снижении температуры от 13,2 С образуется α-модификация, именуемая серым оловом.

    Эта форма не обладает пластичностью и ковкостью, имеет меньшую плотность, поскольку обладает иной кристаллической решеткой.

    При переходе из одной формы в другую наблюдается изменение объема, так как существует разница в плотности, в результате чего происходит разрушение оловянного изделия. Такое явление называют «оловянной чумой». Такая особенность приводит к тому, что существенно уменьшается область использования металла.

    В природных условиях олово можно найти в составе горных пород в виде рассеянного элемента, кроме того известны его минеральные формы. Например, в касситерите содержится его оксид, а в оловянном колчедане — его сульфид.

    Производство

    Перспективными для промышленной переработки считают оловянные руды, в которых содержание металла не меньше 0,1 процента. Но в настоящее время эксплуатируют и те месторождения, в которых содержание металла составляет всего 0,01 процента. Для добычи минерала применяют различные способы, учитывая специфику месторождения, а также его разновидность.

    В основном оловянные руды представлены в виде песков. Добыча сводится к его постоянной промывке, а также к концентрированию рудного минерала. Коренное месторождение разрабатывать гораздо сложнее, поскольку необходимы дополнительные сооружения, строительство и эксплуатация шахт.

    Концентрат минерала перевозят на завод, специализирующийся на плавке цветного металла. Далее осуществляется многократное обогащение руды, измельчение, затем промывание.

    Рудный шлих восстанавливают, воспользовавшись специальными печами. Для полного восстановления олова этот процесс проводят несколько раз.

    На завершающем этапе осуществляют процесс очистки от примесей чернового олова, используя термический либо электролитический способ.

    Использование

    В качестве основной характеристики, позволяющей применять олово, выделяют его высокую коррозионную устойчивость.

    Данный металл, а также его сплавы являются одними из самых устойчивых соединений по отношению к агрессивным химическим веществам. Больше половины всего олова, производимого в мире, применяется для изготовления белой жести.

    Данную технологию, связанную с нанесением на сталь тонкого слоя олова, стали применять для защиты от химической коррозии консервных банок.

    Способность олова к раскатыванию используется для производства из него тонкостенных труб. Из-за неустойчивости данного металла к низким значениям температур его бытовое использование достаточно ограничено.

    У сплавов олова значение теплопроводности существенно ниже, чем у стали, поэтому их можно применять для производства умывальников и ванн, а также для изготовления различной сантехнической фурнитуры.

    Олово подходит для производства незначительных декоративных и бытовых предметов, изготовления посуды, создания оригинальных ювелирных украшений.

    Этот неяркий и ковкий металл при объединении с медью давно стал одним из самых излюбленных материалов скульпторов. Бронза объединяет в себе высокую прочность, стойкость к химической и естественной коррозии.

    Этот сплав востребован в качестве декоративного и строительного материала.

    Олово является тонально-резонансным металлом. Например, при его соединении со свинцом получают сплав, применяемый для изготовления современных музыкальных инструментов. С древних времен известны бронзовые колокола. Для создания органных труб применяют сплав олова со свинцом.

    Заключение

    Увеличение внимания современного производства к вопросам, связанным с охраной окружающей среды, а также к проблемам, связанным с сохранением здоровья населения, повлиял на состав материалов, применяемых в изготовлении электроники.

    Например, возрос интерес к технологии бессвинцового процесса пайки. Свинец является материалом, приносящим существенный вред здоровью человека, поэтому его перестали применять в электротехнике.

    Ужесточились требования к пайке, вместо опасного свинца стали использовать сплавы олова.

    Чистое олово практически не используется в промышленности, поскольку возникают проблемы с развитием «оловянной чумы». Среди основных сфер применения данного редкого рассеянного элемента выделим изготовление сверхпроводящих проводов.

    Покрытие чистым оловом контактных поверхностей позволяет увеличивать процесс пайки, защищать металл от процесса коррозии.

    В результате перехода на бессвинцовую технологию многих производителей стали ими начало использоваться натуральное олово для покрытия контактных поверхностей и выводов. Подобный вариант позволяет по приемлемой стоимости получать качественное защитное покрытие.

    Благодаря отсутствию примесей, новая технология не только считается экологически безопасной, но и дает возможность получать отличный результат по приемлемой стоимости.

    Именно олово производители считают перспективным и современным металлом в электротехнике, радиоэлектронике.

    Источник: https://www.syl.ru/article/310737/himicheskiy-element-olovo-svoystva-i-harakteristiki

    Что такое олово и для чего оно нужно? — Сайт для Всезнаек и Почемучек

    Мягкий белый металл – олово – был одним из первых металлов, которые научился обрабатывать человек. Ученые считают, что добывать олово стали гораздо раньше, чем было впервые найдено железо.

    Некоторые археологические находки подтверждают, что оловянные шахты на территории нынешнего Ирака работали уже четыре тысячи лет назад. Оловом торговали: купцы выменивали его на золото и драгоценные камни.

    В природе олово содержится в оксидной оловянной руде касситерите – минерале, залежи которого встречаются в Юго-Восточной Азии, Южной Америке, Австралии, Китае.

    Из истории

    По данным историков и археологов, впервые обнаружили олово, вероятнее всего, случайно, в наносных отложениях касситерита. Древние горны с отработанным шлаком удалось найти на юго-западе Великобритании. Среди обнаруженных предметов эпохи Древнего Рима и Греции оловянные изделия встречаются очень редко, что подтверждает предположение, что металл этот был дорогим.

    Об олове упоминается в произведениях арабской литературы VIII-IX веков, а также в средневековых произведениях, описывающих путешествия и великие открытия.

    В Богемии и Саксонии олово стали добывать в XII веке.

    Интересно, что задолго до того, как люди стали добывать чистое олово, изобрели бронзу – сплав олова с медью.

    По некоторым данным, бронза была известна человеку уже в 2500 году до нашей эры.

    Дело в том, что олово существует в составе руд вместе с медью, поэтому при плавке получали не чистую медь, а ее сплав с оловом, то есть бронзу. Олово как случайную примесь можно обнаружить в медной посуде египетских фараонов, изготовленной в 2000 году до нашей эры.

    Олово инертно по отношению к воде и кислороду при комнатной температуре. Металл также имеет свойство покрываться тонкой оксидной пленкой на открытом воздухе.

    Именно химическая инертность олова в обычных условиях послужила популярности металла у изготовителей жестяной тары.

    Серная и соляная кислота в разбавленном состоянии воздействуют на олово крайне медленно, а в концентрированном виде при нагревании растворяют его. При соединении с соляной кислотой получают хлорид олова, при реакции с серной – сульфат олова.

    При вступлении в реакцию с разбавленной азотной кислотой получают нитрат олова, с концентрированной азотной кислотой – нерастворимую оловянную кислоту. Соединения олова имеют важное промышленное значение: их используют при производстве гальванических покрытий.

    Применение олова

    Этот серебристо-белый мягкий металл можно раскатать до состояния тонкой фольги. Олово не ржавеет, поэтому его широко используют в разных сферах. Чаще всего из этого металла изготавливают тару. Если олово нанести тонким слоем на другой металл, оно придаст поверхности особый блеск и гладкость.

    Это свойство олова используют при изготовлении консервных банок. Олово часто используют в качестве антикоррозионного покрытия. Более третьей части всего олова, которое сегодня добывают в мире, используется при производстве пищевых емкостей для продуктов и напитков.

    Жестяные банки, хорошо всем знакомые, сделаны из стали, покрытой слоем олова толщиной не более 0,4 мкм.

    Еще треть добываемого олова идет на изготовление припоев – сплавов со свинцом в разных пропорциях. Припои используются в электротехнике, для пайки трубопроводов.

    Такие сплавы могут содержать до 97% олова, медь и сурьму, увеличивающие твердость и прочность сплава.

    Из олова, смешанного с сурьмой, делают посуду (в первую очередь фраже). В промышленности олово используют в различных химических соединениях.

    Источник: http://www.vseznaika.org/chemiks/chto-takoe-olovo-i-dlya-chego-ono-nuzhno/

    Основные физические свойства олова

     
    Олово — металл, служивший человеку с незапамятных времен. Физические свойства олова обеспечили его основополагающую роль в истории человечества. Без него невозможно существование бронзы, остававшейся на протяжении многих веков единственным сплавом, из которого человек изготовлял практически все — от орудий труда до ювелирных украшений.

    Олово — металл использующийся человеком с давних времен

    Физические свойства олова

    При нормальном давлении и температуре 20°C олово идентифицируется как металл с блеском бело-серебристого цвета. Медленно тускнеет на воздухе вследствие образования оксидной пленки.

    Для олова, как и для всех металлов, характерна непрозрачность. Свободные электроны металлической кристаллической решетки заполняют межатомное пространство и отражают световые лучи, не пропуская их. Поэтому находясь в кристаллическом состоянии, металл имеет характерный блеск, а в порошкообразном виде этот блеск утрачивает.

    Обладает отличной ковкостью, т. е. легко подвергается обработке с помощью давления. Ковкость олову придает его высокая пластичность в сочетании с низким сопротивлением деформации.

    Читайте также:  Диабаз это горная порода физические свойства, описание, месторождения и фото камень диабаз

    Пластичность металла позволяет раскатать его в тонкую фольгу, называемую станиолем или оловянной бумагой. Ее толщина колеблется от 0,008 до 0,12 мм.

    Ранее станиоль находил применение в качестве подложки при изготовлении зеркал и в электротехнике при производстве конденсаторов, пока не был полностью вытеснен алюминиевой фольгой.

    Относится к легкоплавким металлам. Температура плавления олова — 231,9°C — способствует быстрому извлечению его из руды. Олово просто сплавляется с другими металлами, что обеспечивает его обширное применение в промышленности.

    Металл закипает при высокой температуре, равной 2620°C, долго оставаясь жидким в расплаве.

    Химически чистое олово при обычной температуре обладает незначительной прочностью. При растяжении предел механической прочности составляет всего 1,7 кгс/мм², а относительное удлинение — 80–90%.

    Эти характеристики говорят о том, что деформировать оловянный прут можно без особых усилий в разных направлениях.

    При этом смещение слоев кристаллической решетки металла относительно друг друга сопровождается специфичным треском.

    Полиморфизм олова

    Полиморфизм (аллотропия) — физическое явление, основанное на перестроении атомов или молекул веществ в твердом состоянии, что влечет за собой изменение их свойств. Каждая полиморфная модификация устойчиво существует только в строго определенном интервале значений температур и давлений.

    Любой металл обладает специфической кристаллической решеткой. При изменении внешних физических условий кристаллическая решетка может меняться. Полиморфизм металлов используют при их термической обработке в промышленности.

    Олово — металл по разному реагирующий на химические воздействия

    Химические свойства олова определяются его положением в периодической системе элементов Д. И. Менделеева и предусматривают амфотерность, т. е. способность проявлять как основные, так и кислотные свойства. Напрямую зависят от полиморфизма олова физические свойства.

    Для металла известны три аллотропные модификации: альфа, бета и гамма. Полиморфная перестройка кристаллических решеток возможна вследствие изменения симметрии электронных оболочек атомов под воздействием разных температур.

    1. Для серого олова (α-Sn) характерна гранецентрированная кубическая кристаллическая решетка. Размер элементарной ячейки решетки здесь большой. Это напрямую отражается на плотности. Она меньше, чем у белого олова: 5,85 и 7,29 г/см³ соответственно. По электропроводности альфа-модификация относится к полупроводникам. По магнетизму — к диамагнетикам, т. к. под внешним магнитным воздействием намагничивается против направления внутреннего магнитного поля. Альфа-олово существует до температуры 13,2°C в виде мелкодисперсного порошка и практического значения не несет.
    2. Белое олово (β-Sn) является самой устойчивой аллотропной модификацией с объемноцентрированной тетрагональной кристаллической решеткой. Существует в диапазоне температурных значений от 13,2 до 161°С. Очень пластично, мягче золота, но тверже свинца. Среди остальных металлов обладает средним значением теплопроводности. Металл относят к проводникам, хотя электропроводность у бета-модификации относительно низкая. Этим свойством пользуются, чтобы уменьшить электропроводность какого-либо сплава путем добавления олова. Является парамагнетиком, т. е. во внешнем магнитном поле намагничивается в направлении внутреннего магнитного поля.
    3. Гамма-модификация (γ-Sn) обладает ромбической кристаллической решеткой, устойчива в диапазоне температур от 161 до 232°С. С увеличением температуры пластичность возрастает, но, достигнув температуры фазового перехода в 161°С, металл полностью утрачивает это свойство. Гамма-модификация имеет большую плотность при высокой степени хрупкости, т. е. сразу рассыпается в порошок, поэтому практического применения не имеет.

    Особенности полиморфного перехода β→α

    Процесс перехода из одной полиморфной модификации в другую происходит при изменении температуры. При этом наблюдают скачкообразные изменения физико-химических свойств металла.

    Выше температуры 161°С бета-олово обратимо превращается в хрупкую гамма-модификацию. Ниже температуры 13°С бета-модификация необратимо переходит в порошкообразное серое олово.

    Данный полиморфный переход совершается с очень малой скоростью, но стоит только на бета-олово попасть крупинкам альфа-модификации, как плотный металл рассыпается в пыль. Поэтому полиморфный переход β→α иногда называют «оловянной чумой».

    Обратно альфа-модификация переводится в бета-модификацию только путем переплавки.

    Фазовый переход β→α значительно ускоряется при минусовых температурах окружающей среды и сопровождается увеличением удельного объема металла примерно на 25%, что приводит к его рассыпанию в порошок.

    У олова есть уникальная реакция на мороз «оловянная чума»

    В истории есть случаи, когда оловянные изделия на морозе становились серым порошком, обескураживая своих хозяев. «Оловянная чума» встречается редко и характерна лишь для химически чистого вещества. При наличии даже мельчайших примесей переход металла в порошок сильно замедляется.

    Заключение

    Олово обладает всеми типичными физическими свойствами металлов, а его полиморфизм по-своему удивителен.

    Без уникальной тягучести и пластичности этого металла невозможно представить себе современную промышленность. Почти половина от мировой добычи олова используется для производства пищевой жести.

    Оставшаяся половина расходуется для изготовления сплавов и различных соединений, применяемых во всех хозяйственных отраслях.

    Источник: https://ometallah.com/svojstva/olova.html

    Оловянные руды

    ОЛОВЯННЫЕ РУДЫ (а. tin ores; н. Zinnerze; ф. minerais d'etain; и. minerales de estanо) — природные минеральные образования, содержащие олово в таких соединениях и концентрациях, при которых их промышленное использование технически возможно и экономически целесообразно. Известно более 90 минералов олова.

    Промышленная оловянная руда преимущественно (85%) представлена касситеритом (около 78% Sn) и станнином (22-28% Sn).

    Повышенные количества олова (до 25%) в виде примеси, приобретающие промышленное значение, также содержатся в силикатных минералах оловоносных скарнов; гранатах, пироксенах, боратах и др. Длительное время практический интерес среди минералов олова представлял лишь касситерит.

    Современные схемы переработки руд олова позволяют также использовать оловосодержащие минералы в рудах (станнин, франкеит, норденшельдин), а также силикатные минералы оловоносных скарнов и др.

    В поверхностных условиях касситерит представляет собой стойкое и инертное соединение, что обуславливает его сохранность в рыхлых отложениях и образование оловоносных россыпей.

    Помимо кристаллического касситерита существует коллоидная скрытотонкокристаллическая его разновидность — «деревянистое олово» гроздевидной и почковидной формы. По составу примесей этот минерал отличается от касситерита повышенным количеством мышьяка, сурьмы, серебра, цинка. Оловянные руды большей частью комплексные. Они часто содержат в переменных количествах вольфрам, медь, цинк, свинец, мышьяк, серебро, тантал, ниобий, индий, кадмий.

    По условиям образования оловянные руды разделяют на эндогенные (коренные) и экзогенные (россыпные). По совокупности геологических факторов оловорудные месторождения группируются в следующие генетические формации; оловоносных редкометалльных пегматитов, касситерит- кварцевую, касситерит-силикатную и касситерит-сульфидную (см. карту).

    Среди эндогенных месторождений руд олова по минеральному составу, технологическим свойствам, практической значимости выделяется ряд промышленных типов: касситерит-грейзеновый, касситерит-кварцевый, касситерит-скарновый, касситерит-силикатный, касситерит-многосульфидный, касситерит-сульфосольно-сульфидный.

    Руда грейзенового типа состоит в основном из кварца, мусковита, полевого шпата, частично топаза, флюорита и касситерита, местами вольфрамита и редких сульфидных минералов; руды обычно массивные, размер агрегатов средний и мелкий; содержание Sn 0,3-0,5%; руды легкообогатимые, извлечение олова 75-80%.

    Примеры месторождений этого типа: Альтенберг (ГДР), Циновец (ЧССР), Экугское (CCCP).

    Руда кварцевого типа сложена преимущественно кварцем, в резко подчинённом количестве присутствуют мусковит, топаз, аресенопирит, касситерит (часто в тесной ассоциации с вольфрамитом), примесь тантала и ниобия; содержание Sn до 1%, в штокверках 0,1-0,3; руды легкообогатимые, извлечение до 80-85%.

    Примеры месторождений: Иультинское, группа Пырканайских штокверков, Светлое (CCCP), Мочи (Бирма), Панашкейра (Португалия).

    Руда скарнового типа сложена гранатами, пироксеном, амфиболом, магнетитом с примесью олова, карбонатами, альбитом, флюоритом, кварцем, касситеритом, сульфидами железа, цинка, меди; обычно это мелко- и тонковкрапленные комплексные, труднообогатимые обычными методами руды; содержание Sn 0,2-0,6%. При использовании метода фьюмингования извлечение олова достигает 80-90%. Примеры месторождений: Кительское (CCCP), Маунт-Бишоф (Австралия), Злата-Копец (ЧССР). Руда силикатного типа сложена турмалином, хлоритом, кварцем, касситеритом, местами повышенным количеством сульфидов железа, меди, свинца и флюоритом; руды вкрапленные, полосчатые, брекчиевидные, среднезернистые; содержание Sn от 0,3 до 1-2%; легкообогатимые, извлечение 75-80%.

    Примеры месторождений; Депутатское, Уч-Кошконское, Валькумейское месторождение, Солнечное, Верхнее, Дубровское, Арсеньевское, Тернистое (CCCP), Корнуолл (Великобритания).

    Руда многосульфидного типа состоит из пирротина, пирита, халькопирита, реже из сульфидов цинка, свинца, олова, сурьмы, некоторого количества касситерита, хлорита, кварца; руды комплексные; касситерит мелкозернистый, часто в сростках с сульфидами, содержание оксидного олова 0,4-0,6%, сульфидного — 0,1-0,2%; руды труднообогатимые, извлечение олова порядка 40%.

    Примеры месторождений: Фестивальное, Перевальное (CCCP), Колькири (Боливия). Касситерит-сульфосольно-сульфидный тип представлен рудами весьма сложного состава, в основном сульфидами и сульфо-станнатами: пирротином, станнином, халькопиритом, галенитом, минералами серебра.

    Касситерит мелкий, часто в сростках с сульфидами, что резко снижает технологические свойства руды. Более 30-40% Sn в виде сульфидов и сульфосолей. Общее содержание Sn в руде не превышает 0,3-0,5%. Морфология залежей сложная. Примеры месторождений: Хетинское, Черёмуховское (CCCP).

    Экзогенные месторождения руд олова представлены россыпями.

    Среди них выделяются элювиальные, делювиальные, аллювиальные, прибрежно-морские и озёрные россыпи, которые сложены песками, суглинками и галечным материалом с кристаллами и агрегатами касситерита и сопутствующими минералами; содержание олова в песках и масштабы месторождений варьируют в широких пределах; извлечение олова из песков обычно до 95%.

    Рудные тела оловорудных месторождений различных промышленных типов большей частью представлены простыми и сложными жилами, реже штокверками. Форма и размеры их меняются в широких пределах. Падение рудных тел большей частью крутое. Россыпи представлены пластовыми горизонтально залегающими телами непостоянной мощности и формы.

    Коренные месторождения разрабатываются подземным и открытым способами; морские россыпи — дражным способом, на континенте — гидравлическим и бульдозерным. Технологические схемы переработки руд и песков для получения концентратов с различным содержанием олова в зависимости от сложности минерального состава и агрегатного их состояния включают гравитацию, флотацию и отсадку.

    В конце 70-х гг.

    начал применяться комплексный технолого-металлургический фьюминговый способ переработки оловянных руд сложного минерального состава (извлечение олова из шлаков в виде летучего сульфида) и бедных концентратов, впервые разработанный в CCCP; используются также методы предварительного обогащения: избирательное дробление, сепарация в тяжёлых суспензиях и ядерно-физические.

    В CCCP преобладают коренные месторождения руд олова, которые размещены преимущественно на Дальнем Востоке, частично в Средней Азии и других районах. Россыпные месторождения по своему значению существенно уступают коренным месторождениям.

    В зарубежных странах доминируют россыпные месторождения, которые и являются основными объектами оловодобывабщей промышленности. Главные ресурсы россыпного олова в мире сосредоточены в шельфовой и континентальной частях стран Юго-восточной Азии (Малайзия, Таиланд, Индонезия и др.); частично они размещены в Африке (Нигерия, Заир и др.).

    Крупные скопления олова в россыпях выявлены на северо-западе Бразилии (район Рондония).

    К числу наиболее крупных оловорудных месторождений зарубежных стран относятся: Льяльягуа, Уануни, Opypo, Потоси (Боливия), Маунт-Кливленд, Ренисон-Белл, Ардлтан, Эбер-фойл (Австралия), Дживор, Уил-Джейн, Хемердон, Маунт-Уэллингтон (Корнуолл, Великобритания), Лиму, Малагэ, Лаочан, Кафан, Сянхуалин (KHP), Маноно-Китотоло (Заир), Альтенберг (ГДР) и др.

    Мировые запасы олова на 1985 (без социалистических стран) оцениваются (здесь и далее тысяч т) в 7559 (в т.ч. подтверждённые 3833); из них соответственно в развивающихся странах 6724 (3111), в т.ч.

    в Индонезии 1500 (740), Малайзии 1200 (600), Таиланде 1200 (400), Боливии 1000 (550), Бирме 500 (50), Бразилии 600 (400), Нигерии 250 (140), Заире 200 (70); в развитых капиталистических странах 835 (722), в т.ч. в Австралии 230 (227), Великобритании 280 (220), ЮАР 40 (40), Японии 20 (20). В конце 70-х — начале 80-х гг.

    впервые разведаны крупные запасы олова (около 90 тысяч т) в штокверковых бедных (содержание Sn 0,155%) рудах и подготовлены для отработки в Канаде.

    Рост потребления и новые области применения олова периодически приводили к некоторому опережению потребления олова над его производством. С конца 60-х гг.

    среднее содержание олова в руде и песках снизилось в 2,5-3,0 раза и составляет: в рудах 0,2-0,8%, в песках 150-350 г/м3. Заметно возрастает роль бедных руд крупных штокверковых месторождений в мировой добыче олова. По сравнению с 60-ми гг.

    резко возросли на мировом рынке цены на металлическое олово. Смотреть также оловянная промышленность.

    Источник: http://www.mining-enc.ru/o/olovyannye-rudy

    Ссылка на основную публикацию